LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A digital-twin and machine-learning framework for the design of multiobjective agrophotovoltaic solar farms

Photo by cokdewisnu from unsplash

This work develops a computational Digital-Twin framework to track and optimize the flow of solar power through complex, multipurpose, solar farm facilities, such as Agrophotovoltaic (APV) systems. APV systems symbiotically… Click to show full abstract

This work develops a computational Digital-Twin framework to track and optimize the flow of solar power through complex, multipurpose, solar farm facilities, such as Agrophotovoltaic (APV) systems. APV systems symbiotically cohabitate power-generation facilities and agricultural production systems. In this work, solar power flow is rapidly computed with a reduced order model of Maxwell’s equations, based on a high-frequency decomposition of the irradiance into multiple rays, which are propagated forward in time to ascertain multiple reflections and absorption for various source-system configurations, varying multi-panel inclination, panel refractive indices, sizes, shapes, heights, ground refractive properties, etc. The method allows for a solar installation to be tested from multiple source directions quickly and uses a genomic-based Machine-Learning Algorithm to optimize the system. This is particularly useful for planning of complex next-generation solar farm systems involving bifacial (double-sided) panelling, which are capable of capturing ground albedo reflection, exemplified by APV systems. Numerical examples are provided to illustrate the results, with the overall goal being to provide a computational framework to rapidly design and deploy complex APV systems.

Keywords: digital twin; twin machine; framework; machine learning; apv systems

Journal Title: Computational Mechanics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.