LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Karhunen–Loève expansions for axially symmetric Gaussian processes: modeling strategies and $$L^2$$ L 2 approximations

Photo from archive.org

Axially symmetric processes on spheres, for which the second-order dependency structure may substantially vary with shifts in latitude, are a prominent alternative to model the spatial uncertainty of natural variables… Click to show full abstract

Axially symmetric processes on spheres, for which the second-order dependency structure may substantially vary with shifts in latitude, are a prominent alternative to model the spatial uncertainty of natural variables located over large portions of the Earth. In this paper, we focus on Karhunen–Loève expansions of axially symmetric Gaussian processes. First, we investigate a parametric family of Karhunen–Loève coefficients that allows for versatile spatial covariance functions. The isotropy as well as the longitudinal independence can be obtained as limit cases of our proposal. Second, we introduce a strategy to render any longitudinally reversible process irreversible, which means that its covariance function could admit certain types of asymmetries along longitudes. Then, finitely truncated Karhunen–Loève expansions are used to approximate axially symmetric processes. For such approximations, bounds for the $$L^2$$ L 2 -error are provided. Numerical experiments are conducted to illustrate our findings.

Keywords: gaussian processes; axially symmetric; processes modeling; karhunen expansions; expansions axially; symmetric gaussian

Journal Title: Stochastic Environmental Research and Risk Assessment
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.