LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modified version for SPEI to evaluate and modeling the agricultural drought severity

Photo from wikipedia

Drought is a climatic phenomenon that can occur in various regions with different climate conditions. Generally, drought has negative impacts on different fields such as environment, rangelands, and water resources.… Click to show full abstract

Drought is a climatic phenomenon that can occur in various regions with different climate conditions. Generally, drought has negative impacts on different fields such as environment, rangelands, and water resources. The agricultural section (especially rain-fed agriculture) is one of the parts that is directly affected by different types of drought especially meteorological and agricultural droughts. The standardized precipitation evapotranspiration index (SPEI) is one of the newest and most applied indices to assess drought characteristics. In this paper, a modification is suggested for SPEI with the substitution of observed precipitation (OP) with effective precipitation (EP) to evaluate drought, with an emphasis on consideration of drought effects on agricultural section. To calculate EP, Food and Agriculture Organization of the united nation method (FAO), US Bureau of Reclamation (USBR), the Simplified version of Soil Conservation Service of the US Department of Agriculture method (USDA-SCS simplified), and the CROPWAT version of USDA-SCS method (USDA-SCS CROPWAT) were used. To compare the calculated SPEI based on OP (SPEIOP) and EP (SPEIEP) (based on different EP calculation methods), the correlation coefficients (CC) between SPEIOP and SPEIEP in four synoptic stations with at least 30 years of climatic data and annual yield loss (%) in winter wheat (Triticum sativum) (simulated using AquaCrop model) in the suitable reference periods for agricultural drought were used. Results showed, in Fasa, Drodzan, and Zarghan stations, the CC between SPEI based on EP using the USBR method (SPEIUSBR) and annual YL% had the highest values (in 42.11%, 68.42%, and 36.84% of Triticum sativum all reference periods, respectively). In Shiraz station, the CC between SPEI based on EP using the FAO method (SPEIFAO) and annual YL% had the highest values (in 47.37% of all reference periods). In all stations, the SPEIUSBR had the most reference periods with significant CC at 0.05 or 0.01 levels.

Keywords: version; drought; method; reference periods; agricultural drought

Journal Title: International Journal of Biometeorology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.