We present an analysis of the impact of circulation weather types (CT) on a factor that might influence biological systems and the human condition, the electric state of the atmosphere.… Click to show full abstract
We present an analysis of the impact of circulation weather types (CT) on a factor that might influence biological systems and the human condition, the electric state of the atmosphere. We present results on the influence of CT to the magnitude, the direction (positive or negative), the fluctuation magnitude, and the short-term peaks of the atmospheric electric field (potential gradient, PG), using data from a station in Greece. CTs with high vorticity centers over Greece are associated with high positive and negative excursions of the PG, higher PG variability, and rain events. CTs with thinner 850–500 hPa layer are associated with higher daily mean values of fair-weather PG. We also examine the influence of CT on the frequency and amplitude of the naturally occurring extremely low-frequency electric field fluctuations known as Schumann resonances (SR) using data from a station in Hungary. The first and second mode SR frequencies are increased during CTs associated with higher 500 hPa geopotential heights and higher 850–500 hPa layer thickness. This hints to a lower-upper atmosphere coupling. So, CTs not only influence the general temperature and humidity conditions to which the biosphere is exposed, but they also affect its exposure to atmospheric electric fields.
               
Click one of the above tabs to view related content.