Let G = G(n, m) be a random graph whose average degree d = 2m/n is below the k-colorability threshold. If we sample a k-coloring σ of G uniformly at… Click to show full abstract
Let G = G(n, m) be a random graph whose average degree d = 2m/n is below the k-colorability threshold. If we sample a k-coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold dk,cond, the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for k exceeding a certain constant k0. More generally, we investigate the joint distribution of the k-colorings that σ induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem.
               
Click one of the above tabs to view related content.