LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation on evolutionary algorithms powered by nonrandom processes

Photo from archive.org

Inherent part of evolutionary algorithms that are based on Darwin’s theory of evolution and Mendel’s theory of genetic heritage, are random processes since genetic algorithms and evolutionary strategies are used.… Click to show full abstract

Inherent part of evolutionary algorithms that are based on Darwin’s theory of evolution and Mendel’s theory of genetic heritage, are random processes since genetic algorithms and evolutionary strategies are used. In this paper, we present extended experiments (of our previous) of selected evolutionary algorithms and test functions showing whether random processes really are needed in evolutionary algorithms. In our experiments we used differential evolution and SOMA algorithms with functions 2ndDeJong, Ackley, Griewangk, Rastrigin, SineWave and StretchedSineWave. We use n periodical deterministic processes (based on deterministic chaos principles) instead of pseudo-random number generators (PRGNs) and compare performance of evolutionary algorithms powered by those processes and by PRGNs. Results presented here are numerical demonstrations rather than mathematical proofs. We propose the hypothesis that a certain class of deterministic processes can be used instead of PRGNs without lowering the performance of evolutionary algorithms.

Keywords: algorithms; nonrandom processes; investigation evolutionary; evolutionary algorithms; powered nonrandom; algorithms powered

Journal Title: Soft Computing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.