LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RED: a new method for performance ranking of large decision making units

Photo by jordanmcdonald from unsplash

Data envelopment analysis (DEA) method has been widely used in many economic and industrial applications to measure efficiency and rank performances of decision making units (DMUs). Improving the accuracy and… Click to show full abstract

Data envelopment analysis (DEA) method has been widely used in many economic and industrial applications to measure efficiency and rank performances of decision making units (DMUs). Improving the accuracy and computation time in measuring the efficiency of DMUs have been two main challenges for the DEA. Specifically, with large DMUs, the DEA-based methods are argued to require large amount of memory space and CPU time to measure DMUs efficiencies, and suffer from inability to obtain complete performance ranking. To address these issues, in this paper, a new alternative method that is based on input oriented model (IOM) and efficiency ratio (ER), called ratio efficiency dominance (RED), is proposed. The proposed method seeks to minimize the inputs while maximizing the outputs to obtain efficiency or performance scores, which is independent of DEA method and the use of linear programming (LP). It is also to overcome the drawbacks of uncontrolled convergence, non-generalization and instability induced from integrating prediction techniques such as neural networks (NNs) with DEA. To evaluate the proposed method, experiments were performed on small, large and very large DMUs data sets to show the effectiveness of proposed method. The experimental results demonstrated that, in all cases, the proposed method is able to produce a complete and more accurate ranking compared to the conventional DEA methods or its hybrids.

Keywords: making units; performance ranking; method; decision making; efficiency

Journal Title: Soft Computing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.