LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Establishing the relationship matrix in QFD based on fuzzy regression models with optimized h values

Photo from wikipedia

In quality function deployment (QFD), establishing the relationship matrix is quite an important step to transform ambiguous and qualitative customer requirements into concrete and quantitative technical characteristics. Owing to the… Click to show full abstract

In quality function deployment (QFD), establishing the relationship matrix is quite an important step to transform ambiguous and qualitative customer requirements into concrete and quantitative technical characteristics. Owing to the inherent imprecision and fuzziness of the matrix, the fuzzy linear regression (FLR) is gradually applied into QFD to establish it. However, with regard to an FLR model, the h value is a critical parameter whose setting is always an aporia and it is commonly determined by decision makers. To a certain extent, this subjective assignment fades the effectiveness of FLR in the application of QFD. Aiming to this problem, FLR models with optimized parameters h obtained by maximizing system credibility are introduced into QFD in this paper, in which relationship coefficients are assumed as asymmetric triangular fuzzy numbers. Moreover, a systematic approach is developed to identify the relationship matrix in QFD, whose application is demonstrated through a packing machine example. The final results show that FLR models with optimized h values can always achieve a more reliable relationship matrix. Besides, a comparative study on symmetric and asymmetric cases is elaborated detailedly.

Keywords: models optimized; qfd; matrix; establishing relationship; relationship; relationship matrix

Journal Title: Soft Computing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.