A return scaling cross-correlation function of exponential parameter is introduced in the present work, and a stochastic time strength neural network model is developed to predict the return scaling cross-correlations… Click to show full abstract
A return scaling cross-correlation function of exponential parameter is introduced in the present work, and a stochastic time strength neural network model is developed to predict the return scaling cross-correlations between two real stock market indexes, Shanghai Composite Index and Shenzhen Component Index. In the proposed model, the stochastic time strength function gives a weight for each historical data and makes the model have the effect of random movement. The empirical research is performed in testing the model forecasting effect of long-term cross-correlation relationships by training short-term cross-correlations, and a corresponding comparison analysis is made to the backpropagation neural network model. The empirical results show that the proposed neural network is advantageous in increasing the forecasting precision.
               
Click one of the above tabs to view related content.