Behavioral teaching procedures can be used to promote the individualized learning of reading skills for children, and computational processes can assist instructors in the generation of a set of tasks.… Click to show full abstract
Behavioral teaching procedures can be used to promote the individualized learning of reading skills for children, and computational processes can assist instructors in the generation of a set of tasks. However, the automatic generation of these tasks can be unfeasible due to the high-order search space for the possible combinations of tasks; this complexity increases when considering the possible constraints as well as adapting the tasks to the individual characteristics of each student. This paper presents a new method to automatically generate teaching matching-to-sample tasks, adapting the difficulty by using bio-inspired optimization metaheuristics. Genetic algorithms, ant colony optimization, and integer and categorical particle swarm optimization were evaluated to determine their stability and capacity to generate adapted tasks. A comparison of the results between the algorithms showed a better rate of convergence for the genetic algorithms, which were able to generate tasks at an adapted level of difficulty to students. These tasks were applied to a group of students at a Brazilian public school in the early stages of a literacy course indicating satisfactory effects in the individual learning process.
               
Click one of the above tabs to view related content.