LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A channel-aware expected energy consumption minimization strategy in wireless networks

Photo by mbrunacr from unsplash

With the rapid development of wireless network technology, energy saving has become a very important topic to build a green network in wireless networks. Due to the time-varying characteristics of… Click to show full abstract

With the rapid development of wireless network technology, energy saving has become a very important topic to build a green network in wireless networks. Due to the time-varying characteristics of the channel, it is possible to obtain a higher utilization for energy by using the channel with good state in wireless communications. From the view of the data transmission energy consumption of the whole wireless network, this paper proposes an expected energy consumption minimization strategy (E2CMS) for data transmission based on the optimal stopping theory. Considering the maximum transmission delay and a given receiving power, E2CMS delays data to transmit until the best expected channel state is detected. In order to solve the problem, firstly, we construct an energy consumption minimization problem with quality of service constraints. Then, we prove that E2CMS is a pure threshold strategy by the optimal stopping theory and obtain the power threshold by solving a fixed-point equation using backward induction. Finally, simulations are performed in a typical small-scale fading channel model. E2CMS is compared with a variety of different transmission scheduling strategies. The results show that E2CMS has lower average energy consumption for per unit data and significantly improves the network performance.

Keywords: wireless; consumption minimization; energy consumption; energy

Journal Title: Soft Computing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.