LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network

Photo from wikipedia

AbstractThis paper aims to predict the strength of materials similar to the ionic rare earth (IRE) ores [hereinafter referred as similar materials (SM)]. A 4 × Y × 2 back propagation neural network (BPNN)… Click to show full abstract

AbstractThis paper aims to predict the strength of materials similar to the ionic rare earth (IRE) ores [hereinafter referred as similar materials (SM)]. A 4 × Y × 2 back propagation neural network (BPNN) prediction model, based on 18 groups of samples of the SM with different mix proportions, was used to describe their strength. The BPNN modelling scheme includes four input layer neurons, representing the amounts of kaolinite, potassium feldspar, anorthose and mica, and two output layer neurons corresponding to the strength indices c and φ of the samples after 6 h leaching. Comparing the training and prediction errors, it is verified that the error in predicted strength is minimized when the number of hidden layer neurons Y equals 9. The correlation coefficient R of the prediction model is as high as 0.998, and the maximum relative errors of the strength indices (c and φ) are 4.11% and 4.26%, respectively. Orthogonal tests show that the BPNN is a reliable and accurate method to predict the strength of SM. Featuring uniform dispersion, comparability and nonlinear optimization, the proposed method sheds further light on the strength prediction of IRE ores.

Keywords: ionic rare; strength; similar materials; prediction; rare earth; back propagation

Journal Title: Soft Computing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.