As a generalized extension of Pawlak’s rough set model, the multigranulation decision-theoretic rough set model in ordered information systems utilizes the basic set assignment function to construct probability measure spaces… Click to show full abstract
As a generalized extension of Pawlak’s rough set model, the multigranulation decision-theoretic rough set model in ordered information systems utilizes the basic set assignment function to construct probability measure spaces through dominance relations. It is an effective tool to deal with uncertain problems and widely used in practical decision problems. However, when the scale of dataset is large, it takes a lot of time to characterize the approximations of the target concept, as well as complicated calculation processes. In this paper, we develop a novel model called local multigranulation decision-theoretic rough set in an ordered information system to overcome the above-mentioned limitation. Firstly, to reduce the computing time of the information granule independent of the target concept, we only use the characterization of the elements in the target concept to approximate this target concept. Moreover, the corresponding local multigranulation decision-theoretic rough set in an ordered information system is addressed according to the established local model, and the comparisons are made between the proposed local algorithm and the algorithm of original multigranulation decision-theoretic rough set in ordered information systems. Finally, the validity of the local approximation operators is verified through the experimental evaluation using six datasets coming from the University of California-Irvine (UCI) repository.
               
Click one of the above tabs to view related content.