Abstract This work presents a sensor-fault-tolerant design applied to a decentralized dissolved oxygen control in an activated sludge process subject to sensor faults such as bias and slow drifts. The… Click to show full abstract
Abstract This work presents a sensor-fault-tolerant design applied to a decentralized dissolved oxygen control in an activated sludge process subject to sensor faults such as bias and slow drifts. The core idea is to use a data-driven soft sensor based on adaptive neuro-fuzzy inference system to act as a backup of the joint sensor and controller block, and to exploit the data/analytical correlations existing in the system. After fault detection and isolation, a control reconfiguration technique takes action in order to surmount/counteract the effect of the fault until the faulty sensor is repaired. The approach presented here was applied to the Benchmark Simulation Model n.1 and was able to demonstrate the improvements on the control system dependability.
               
Click one of the above tabs to view related content.