In the present study, a new algorithm is developed for neural network training by combining a gradient-based and a meta-heuristic algorithm. The new algorithm benefits from simultaneous local and global… Click to show full abstract
In the present study, a new algorithm is developed for neural network training by combining a gradient-based and a meta-heuristic algorithm. The new algorithm benefits from simultaneous local and global search, eliminating the problem of getting stuck in local optimum. For this purpose, first the global search ability of the grey wolf optimizer (GWO) is improved with the Levy flight, a random walk in which the jump size follows the Levy distribution, which results in a more efficient global search in the search space thanks to the long jumps. Then, this improved algorithm is combined with back propagation (BP) to use the advantages of enhanced global search ability of GWO and local search ability of BP algorithm in training neural network. The performance of the proposed algorithm has been evaluated by comparing it against a number of well-known meta-heuristic algorithms using twelve classification and function-approximation datasets.
               
Click one of the above tabs to view related content.