LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Legendre–Fenchel denoising and SVD-based dimensionality reduction algorithm on hyperspectral image classification

Photo by freestocks from unsplash

This paper describes the importance of performing preprocessing techniques namely, denoising and dimensionality reduction to the hyperspectral data before classification. The two main problems faced in hyperspectral image processing are… Click to show full abstract

This paper describes the importance of performing preprocessing techniques namely, denoising and dimensionality reduction to the hyperspectral data before classification. The two main problems faced in hyperspectral image processing are noise and higher dimension. Legendre–Fenchel transformation denoises each band in the data while preserving the edge information. To overcome the issue of high data volume, inter-band block correlation coefficient technique followed by singular value decomposition and QR decomposition is utilized to reduce the dimension of hyperspectral image without affecting the critical information. The preprocessed data are classified using kernel-based libraries, namely GURLS and LibSVM. Performance of these techniques is evaluated with accuracy assessment measures. The experiment was performed on five datasets. Experimental analysis shows that the proposed denoising technique increases the classification accuracy. In the case of Indian Pines data, with 10% of the training data, the classification accuracy is improved from 83.5 to 97.3%. And also, dimensionality reduction technique gives good classification accuracy even with 50% reduction in the number of bands. The classification accuracy of the Salinas-A and Pavia University data is 99.4 and 94.6% with the 50% dimensionally reduced (100 and 50 bands, respectively) number of bands. The bands extracted by the dimensionality reduction technique using the denoised hyperspectral data differ from that of the hyperspectral data without denoising. This emphasizes the importance of denoising the dataset before applying dimensionality reduction technique. In case of Pavia University, the band numbers above 50 (out of 100 bands) which were not informative bands before denoising are selected as informative bands by dimension reduction technique after denoising .

Keywords: technique; reduction; classification; hyperspectral image; dimensionality reduction

Journal Title: Neural Computing and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.