LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An expert 2DOF fractional order fuzzy PID controller for nonlinear systems

Photo by yanots from unsplash

This work presents a generic two-degree-of-freedom fractional order fuzzy PI-D (2DOF FOFPI-D) controller dedicated to a class of nonlinear systems. The control law for proposed scheme is derived from basic… Click to show full abstract

This work presents a generic two-degree-of-freedom fractional order fuzzy PI-D (2DOF FOFPI-D) controller dedicated to a class of nonlinear systems. The control law for proposed scheme is derived from basic 2DOF fractional order PID controller in discrete domain. Expert intelligence is embedded in overall derived control law by utilizing formula-based fuzzy design methodology. The controller structure comprises of fractional order fuzzy PI (FOFPI) and fractional order derivative filter to handle multiple issues and provides flexibility in design and self-tuning control feature. Further, the proposed scheme is compared with its integer order counterpart and 2DOF PI-D controller for coupled nonlinear 2-link robotic arm in real operating environment. The parameters of designed controllers are optimally tuned using multi-objective non-dominated sorting genetic algorithm-II for attaining low variation in control effort and error index. Intensive simulation studies are performed to analyze trajectory tracking, model uncertainty, disturbance due to cogging, sensor noise and noise as well as disturbance rejection simultaneously. Results demonstrate the superior performance of 2DOF FOFPI-D controller as compared to other designed controllers in the facets of different operating conditions.

Keywords: order; order fuzzy; 2dof fractional; fractional order; controller; nonlinear systems

Journal Title: Neural Computing and Applications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.