LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An adaptive mechanism to achieve learning rate dynamically

Photo from wikipedia

Gradient descent is prevalent for large-scale optimization problems in machine learning; especially it nowadays plays a major role in computing and correcting the connection strength of neural networks in deep… Click to show full abstract

Gradient descent is prevalent for large-scale optimization problems in machine learning; especially it nowadays plays a major role in computing and correcting the connection strength of neural networks in deep learning. However, many gradient-based optimization methods contain more sensitive hyper-parameters which require endless ways of configuring. In this paper, we present a novel adaptive mechanism called adaptive exponential decay rate (AEDR). AEDR uses an adaptive exponential decay rate rather than a fixed and preconfigured one, and it can allow us to eliminate one otherwise tuning sensitive hyper-parameters. AEDR also can be used to calculate exponential decay rate adaptively by employing the moving average of both gradients and squared gradients over time. The mechanism is then applied to Adadelta and Adam; it reduces the number of hyper-parameters of Adadelta and Adam to only a single one to be turned. We use neural network of long short-term memory and LeNet to demonstrate how learning rate adapts dynamically. We show promising results compared with other state-of-the-art methods on four data sets, the IMDB (movie reviews), SemEval-2016 (sentiment analysis in twitter) (IMDB), CIFAR-10 and Pascal VOC-2012.

Keywords: mechanism; exponential decay; adaptive mechanism; rate; hyper parameters; learning rate

Journal Title: Neural Computing and Applications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.