LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

G2P: a new descriptor for pedestrian detection

Photo by robertbye from unsplash

Pedestrian detection plays an important role in many applications. Since its birth 13 years ago, Histogram Of Gradient (HOG) descriptor has become a popular descriptor for pedestrian detection. Besides its… Click to show full abstract

Pedestrian detection plays an important role in many applications. Since its birth 13 years ago, Histogram Of Gradient (HOG) descriptor has become a popular descriptor for pedestrian detection. Besides its original instantiation, the HOG also reflects a general methodology of constructing descriptors based on histograms of gradients of certain image sub-blocks. Following this general methodology, a number of HOG-style descriptors have been reported in the literature. The generation process of these descriptors is summarized in this work, and a new descriptor is presented for pedestrian detection. Three contributions are made in this work. First, a general model called descriptor generation model (DGM) is proposed, which can be used to systematically construct a wide range of HOG-style descriptors for pedestrian detection. Second, based on the DGM, a pedestrian detection experimental framework (PDEF) is introduced to find the optimal HOG-style descriptor. In the PDEF, the performance of each descriptor can be evaluated. At last, the genetic algorithm is employed to search the optimal (or semi-optimal) HOG-style descriptor in the descriptor space. And a new descriptor named Second-order Gradient for Pedestrian detection (G2P) is presented. Experimental results demonstrate the advantage of the G2P descriptor over the standard HOG descriptor with ETH, CVC-02-system, NITCA and KITTI dataset, which also reflects the effectiveness of the DGM-based PDEF in finding better descriptors for pedestrian detection.

Keywords: descriptor; methodology; new descriptor; hog; pedestrian detection

Journal Title: Neural Computing and Applications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.