Computed tomography (CT) imaging is the preferred imaging modality for diagnosing lung-related complaints. Automatic lung segmentation is the most common prerequisite to develop a computerized diagnosis system for analyzing chest… Click to show full abstract
Computed tomography (CT) imaging is the preferred imaging modality for diagnosing lung-related complaints. Automatic lung segmentation is the most common prerequisite to develop a computerized diagnosis system for analyzing chest CT images. In this paper, a convolutional deep and wide network (CDWN) is proposed to segment lung region from the chest CT scan for further medical diagnosis. Earlier lung segmentation techniques depend on handcrafted features, and their performance relies on the features considered for segmentation. The proposed model automatically segments the lung from complete CT scan in two laps: (1) learning the required filters to extract hierarchical feature representations at convolutional layers, (2) dense prediction with spatial features through learnable deconvolutional layers. The model has been trained and evaluated with low-dose chest CT scan images on LIDC-IDRI database. The proposed CDWN reaches the average Dice coefficient of 0.95 and accuracy of 98% in segmenting the lung regions from 20 test images and maintains consistent results for all test images. The experimental results confirm that the proposed approach achieves a superior performance compared to other state-of-the-art methods for lung segmentation.
               
Click one of the above tabs to view related content.