LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI

Photo by dulhiier from unsplash

Correct segmentation of stroke lesions from magnetic resonance imaging (MRI) is crucial for neurologists and patients. However, manual segmentation relies on expert experience and is time-consuming. The complicated stroke evolution… Click to show full abstract

Correct segmentation of stroke lesions from magnetic resonance imaging (MRI) is crucial for neurologists and patients. However, manual segmentation relies on expert experience and is time-consuming. The complicated stroke evolution phase and the limited samples pose challenges for automatic segmentation. In this study, we propose a novel deep convolutional neural network (Res-CNN) to automatically segment acute ischemic stroke lesions from multi-modality MRIs. Our network draws on U-shape structure, and we embed residual unit into network. In Res-CNN, we use residual unit to alleviate the degradation problem and use multi-modality to exploit the complementary information in MRIs. Before training the model, we use data fusion and data augmentation methods to increase the number of training images. Seven neural networks are extensively evaluated on two acute ischemic stroke datasets. Res-CNN shows good performance compared with other six networks both in single modality and multi-modality. Furthermore, compared with the gold standard segmentation manually labeled by two neurologists on a local test dataset, our network achieves the best results in seven neural networks. The average Dice coefficient and Hausdorff distance of our method are 74.20% and 2.33 mm, respectively. Our proposed network may provide a useful tool for segmentation lesion of acute ischemic stroke.

Keywords: ischemic stroke; network; acute ischemic; modality; multi modality

Journal Title: Neural Computing and Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.