LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generative image completion with image-to-image translation

Photo by usgs from unsplash

Though many methods have been proposed, image completion still remains challenge; besides textured patterns completion, it often requires high-level understanding of scenes and objects being completed. More recently, deep convolutional… Click to show full abstract

Though many methods have been proposed, image completion still remains challenge; besides textured patterns completion, it often requires high-level understanding of scenes and objects being completed. More recently, deep convolutional generative adversarial networks have been turned into an efficient tool for image completion. Manually specified transformation methods are having been replaced with training neural nets. Hand-engineered loss calculations for training the generator are replaced by the loss function provided by the discriminator. With existing deep learning-based approaches, image completion results in high quality but may still lack high-level feature details or contain artificial appearance. In our completion architecture, we leverage a fully convolutional generator with two subnetworks as our basic completion approach and divide the problem into two steps: The first subnetwork generates the outline of a completed image in a new domain, and the second subnetwork translates the outline to a visually realistic output with image-to-image translation. The feedforward fully convolutional network can complete images with holes of any size at any location. We compare our method with several existing ones on representative datasets such as CelebA, ImageNet, Places2 and CMP Facade. The evaluations demonstrate that our model significantly improves the completion results.

Keywords: image; completion; image completion; image image; image translation

Journal Title: Neural Computing and Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.