Outlier detection has become an important research area in the field of stream data mining due to its vast applications. In the literature, many methods have been proposed, but they… Click to show full abstract
Outlier detection has become an important research area in the field of stream data mining due to its vast applications. In the literature, many methods have been proposed, but they work well for simple and positive regions of outliers, where boundary regions are not given much importance. Moreover, an algorithm which processes stream data must be effective and able to compute infinite data in one pass or limited number of passes. These problems have motivated us to propose an outlier detection approach for large-scale data stream. The proposed algorithm employs the concept of relative cardinality, entropy outlier factor theory of information-based system, and size-variant sliding window in stream data. In addition, we propose a new methodology for concept drift adaptation on evolving data streams. The proposed method is executed on nine benchmark datasets and compared with six existing methods that are EXPoSE, iForest, OC-SVM, LOF, KDE, and FastAbod. Experimental results show that the proposed method outperforms six existing methods in terms of receiver operating characteristic curve, precision recall, and computational time for positive regions as well as for boundary regions.
               
Click one of the above tabs to view related content.