LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel explainable machine learning approach for EEG-based brain-computer interface systems

Photo from wikipedia

Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s… Click to show full abstract

Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG sources epochs are used as source-time maps input to a custom deep convolutional neural network (CNN) that is trained to perform 2-ways classification tasks: pre-hand close (HC) versus resting state (RE) and pre-hand open (HO) versus RE. The developed deep CNN works well (accuracy rates up to $$89.65 \pm 5.29\%$$ for HC versus RE and $$90.50 \pm 5.35\%$$ for HO versus RE), but the core of the present study was to explore the interpretability of the deep CNN to provide further insights into the activation mechanism of cortical sources during the preparation of hands’ sub-movements. Specifically, occlusion sensitivity analysis was carried out to investigate which cortical areas are more relevant in the classification procedure. Experimental results show a recurrent trend of spatial cortical activation across subjects. In particular, the central region (close to the longitudinal fissure) and the right temporal zone of the premotor together with the primary motor cortex appear to be primarily involved. Such findings encourage an in-depth study of cortical areas that seem to play a key role in hand’s open/close preparation.

Keywords: hand; explainable machine; learning approach; machine learning; eeg; novel explainable

Journal Title: Neural Computing and Applications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.