LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep neural network-based hierarchical learning method for dispatch control of multi-regional power grid

Photo from wikipedia

Multi-regional power grid with interconnected tie-lines has become an increasingly important structure for current power systems, and can efficiently reallocate power resources on a large scale. The power dispatch of… Click to show full abstract

Multi-regional power grid with interconnected tie-lines has become an increasingly important structure for current power systems, and can efficiently reallocate power resources on a large scale. The power dispatch of a multi-regional power grid involving multiple resources plays a key role in maintaining system balance and improving operating profit. Current optimisation methods for this dispatch problem need to execute a complete optimisation calculation at each dispatch moment, and lack online decision and optimisation abilities. Therefore, we introduce a deep neural network-based hierarchical learning optimisation method to establish an online approach to focused coordination dispatch problems. The method can realise system optimisation based solely on historical operating data. First, the focused coordination dispatch problem is formulated mathematically. Then, we establish a hierarchical structure suitable for online learning methods. Under this designed structure, we establish a learning optimisation model for each agent, and introduce a deep reinforcement learning algorithm for solving the optimisation problems online. Simulation results based on the IEEE 300-bus system are presented to validate the efficiency and availability of the proposed hierarchical method.

Keywords: dispatch; regional power; multi regional; power; power grid; optimisation

Journal Title: Neural Computing and Applications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.