LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review

Photo from wikipedia

The brain–computer interface (BCI) is an emerging technology that has the potential to revolutionize the world, with numerous applications ranging from healthcare to human augmentation. Electroencephalogram (EEG) motor imagery (MI)… Click to show full abstract

The brain–computer interface (BCI) is an emerging technology that has the potential to revolutionize the world, with numerous applications ranging from healthcare to human augmentation. Electroencephalogram (EEG) motor imagery (MI) is among the most common BCI paradigms that have been used extensively in smart healthcare applications such as post-stroke rehabilitation and mobile assistive robots. In recent years, the contribution of deep learning (DL) has had a phenomenal impact on MI-EEG-based BCI. In this work, we systematically review the DL-based research for MI-EEG classification from the past ten years. This article first explains the procedure for selecting the studies and then gives an overview of BCI, EEG, and MI systems. The DL-based techniques applied in MI classification are then analyzed and discussed from four main perspectives: preprocessing, input formulation, deep learning architecture, and performance evaluation. In the discussion section, three major questions about DL-based MI classification are addressed: (1) Is preprocessing required for DL-based techniques? (2) What input formulations are best for DL-based techniques? (3) What are the current trends in DL-based techniques? Moreover, this work summarizes MI-EEG-based applications, extensively explores public MI-EEG datasets, and gives an overall visualization of the performance attained for each dataset based on the reviewed articles. Finally, current challenges and future directions are discussed.

Keywords: motor imagery; electroencephalogram eeg; based techniques; deep learning; eeg motor; eeg

Journal Title: Neural Computing and Applications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.