The Ediacaran–Ordovician Meguma Supergroup was thrust over Avalonia basement prior to the intrusion of post-Acadian, ca. 370 Ma, S-type granitic batholiths. This has led to two main hypotheses regarding the original… Click to show full abstract
The Ediacaran–Ordovician Meguma Supergroup was thrust over Avalonia basement prior to the intrusion of post-Acadian, ca. 370 Ma, S-type granitic batholiths. This has led to two main hypotheses regarding the original location of the Meguma terrane, a continental rise prism bordering either NW Africa or Avalonia. On the other hand, the pre-Acadian, ca. 440 Ma Brenton pluton has yielded the following U/Pb LA-ICP-MS zircon data: (1) 448 ± 3 Ma population peak inferred to be the intrusive age and (2) ca. 550 and 700 Ma inherited ages common to both Avalonia and NW Africa. In contrast, Hf isotopic analyses of zircon yielded model ages ranging from 814 to 1127 Ma with most between 940 and 1040 Ma: such ages are typical of Avalonia and not NW Africa. The ages of the inherited zircons found within the Brenton pluton suggest that it was probably derived by partial melting of sub-Meguma, mid-crustal Avalonian rocks, upon which the Meguma Supergroup was deposited. Although Avalonia is commonly included in the peri-Gondwanan terranes off NW Africa or Amazonia, paleomagnetic data, faunal provinciality, and Hf data suggest that, during the Ediacaran-Early Cambrian, it was an island chain lying near the tropics (ca. 20–30 °S) and was possibly a continuation of the Bolshezemel volcanic arc accreted to northern Baltica during the Ediacaran Timanide orogenesis. This is consistent with the similar derital zircon population in the Ediacaran–Cambrian Meguma Supergroup and the Dividal Group in northeastern Baltica.
               
Click one of the above tabs to view related content.