LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Syn-deformational melt percolation through a high-pressure orthogneiss and the exhumation of a subducted continental wedge (Orlica-Śnieżnik Dome, NE Bohemian Massif)

Photo from wikipedia

High-pressure granitic orthogneiss of the south-eastern Orlica–Śnieżnik Dome (NE Bohemian Massif) shows relics of a shallow-dipping foliation, reworked by upright folds and a mostly pervasive N–S trending subvertical axial planar… Click to show full abstract

High-pressure granitic orthogneiss of the south-eastern Orlica–Śnieżnik Dome (NE Bohemian Massif) shows relics of a shallow-dipping foliation, reworked by upright folds and a mostly pervasive N–S trending subvertical axial planar foliation. Based on macroscopic observations, a gradual transition from banded to schlieren and nebulitic orthogneiss was distinguished. All rock types comprise plagioclase, K-feldspar, quartz, white mica, biotite and garnet. The transition is characterized by increasing presence of interstitial phases along like-like grain boundaries and by progressive replacement of recrystallized K-feldspar grains by fine-grained myrmekite. These textural changes are characteristic for syn-deformational grain-scale melt percolation, which is in line with the observed enrichment of the rocks in incompatible elements such as REEs, Ba, Sr and K suggesting open-system behaviour with melt passing through the rocks. The P – T path deduced from the thermodynamic modelling indicates decompression from ~ 15−16 kbar and ~ 650–740 ºC to ~ 6 kbar and ~ 640 ºC. Melt was already present at the P–T peak conditions as indicated by the albitic composition of plagioclase in films, interstitial grains and in myrmekite. The variably re-equilibrated garnet suggests that melt content may have varied along the decompression path, involving successively both melt gain and loss. The ~ 6–8 km wide zone of vertical foliation and migmatite textural gradients is interpreted as vertical crustal-scale channel where the grain-scale melt percolation was associated with horizontal shortening and vertical flow of partially molten crustal wedge en masse.

Keywords: nie nik; orlica nie; high pressure; melt percolation; melt

Journal Title: International Journal of Earth Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.