LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of oxygen-permeable mold on fabrication of microchannels with ultraviolet curable materials

Photo by eagleboobs from unsplash

In this work, effect of oxygen diffusion on curing of materials which are sensitive to ultra violet light (UV) in fabrication of microchannels using micromolds with oxygen permeability is investigated.… Click to show full abstract

In this work, effect of oxygen diffusion on curing of materials which are sensitive to ultra violet light (UV) in fabrication of microchannels using micromolds with oxygen permeability is investigated. The effects of physical boundary conditions of mold on microfabrication of polymeric arrays of high aspect-ratio microchannels in presence of oxygen inhibition and under variable UV intensity and dose are studied analytically and experimentally. Polydimethylsiloxane (PDMS) as the oxygen-permeable material and polyurethane methacrylate (PUMA) as the UV-curable substrate are selected for experiments. It is shown that for a wide range of exposure intensity and dose, a thin layer of PUMA resin with thickness of a few micrometers in contact with the mold remains uncured and inhibited by high concentration of oxygen molecules while the overall curing rate is reduced by about tenfold for PDMS compared to impermeable silicon mold. The direct impact of presence of high concentration of oxygen in both of mold and resin during UV curing and due to insufficient exposure dose and intensity is a considerable alteration in geometries of manufactured microstructures. The obtained results are crucial for method of use of micromolding and evaluation of fidelity of the replicated microstructures with the proposed design in terms of verticality of the walls and details of the transferring patterns that are important to microfluidic applications.

Keywords: oxygen; fabrication microchannels; oxygen permeable; impact oxygen; permeable mold

Journal Title: Microsystem Technologies
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.