An impact-based frequency-up-conversion (FUC) energy harvesting system has been studied for realizing high power density from ambient vibration. It can harvest the lower frequency environment vibration and convert into a… Click to show full abstract
An impact-based frequency-up-conversion (FUC) energy harvesting system has been studied for realizing high power density from ambient vibration. It can harvest the lower frequency environment vibration and convert into a higher frequency self-oscillation. The energy output is greatly improved. In this paper, theoretical modeling of the FUC energy harvesting system is established, including a lower frequency piezoelectric bimorph (LFPB) and a higher frequency piezoelectric bimorph (HFPB). The dynamic analysis is carried out and the output performance is simulated. Experiments indicate that the developed FUC system can generate a high peak power of 2.62 mW and an average power of 0.58 mW from an external excitation acceleration of 1 g at 29 Hz. The peak power output of the HFPB operating at 153.8 Hz is about 4.5 times higher than that of the LFPB at 29 Hz. This work provides a theoretical basis and methodology for developing impact-based FUC energy harvesting system, which opens up a way for achieving high power output at low ambient frequency.
               
Click one of the above tabs to view related content.