LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative

Photo by kellysikkema from unsplash

A new mathematical model of generalized magneto-thermo-viscoelasticity theories with memory-dependent derivatives (MDD) of dual-phase-lag heat conduction law is developed. The equations for one-dimensional problems including heat sources are cast into… Click to show full abstract

A new mathematical model of generalized magneto-thermo-viscoelasticity theories with memory-dependent derivatives (MDD) of dual-phase-lag heat conduction law is developed. The equations for one-dimensional problems including heat sources are cast into matrix form using the state space and Laplace transform techniques. The resulting formulation is applied to a problem for the whole space with a plane distribution of heat sources. It is also applied to a perfect conducting semi-space problem with a traction-free surface and plane distribution of heat sources located inside the medium. The inversion of the Laplace transforms is carried out using a numerical approach. Numerical results for the temperature, displacement, stress and heat flux distributions as well as the induced magnetic and electric fields are given and illustrated graphically. A comparison is made with the results obtained in the coupled theory. The impacts of the MDD heat transfer parameter and Alfven velocity on a viscoelastic material, for example, poly (methyl methacrylate) (Perspex) are discussed.

Keywords: thermo viscoelasticity; phase lag; memory dependent; magneto thermo; heat; dual phase

Journal Title: Microsystem Technologies
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.