This paper reports the results of actuated disc cutting (ADC) experiments, conducted with an instrumented tabletop ADC rig on a soft limestone. The experiments were designed to assess the predictions… Click to show full abstract
This paper reports the results of actuated disc cutting (ADC) experiments, conducted with an instrumented tabletop ADC rig on a soft limestone. The experiments were designed to assess the predictions of an ADC model (Dehkhoda and Detournay in Rock Mech Rock Eng 50(2):465–483, 2016) and the validity of the assumptions on which the model is constructed, in particular the invariance of the specific energy on actuation. All the experiments were conducted at the same depth of cut, which was selected to ensure a brittle mode of failure, characterized by the formation of chips. By changing the disc size and actuation amplitude, as well as the actuation frequency and the cartridge velocity, the experiments covered a large enough range of the two numbers controlling the cutting response, to rigorously test the theoretical model and its assumptions. Analyses of the experimental data show in general good agreement with the theoretical predictions, in particular the decrease of the thrust force with increased actuation and the partitioning of the external power between actuation of the disc and translation of the cartridge. The experimental results do not show any significant dependence of the specific energy on actuation.
Click one of the above tabs to view related content.