LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Voltammetric biosensor for coronavirus spike protein using magnetic bead and screen-printed electrode for point-of-care diagnostics

Photo from wikipedia

The rapid spread of the novel human coronavirus 2019 (COVID-19) and its morbidity have created an urgent need for rapid and sensitive diagnostics. The real-time polymerase chain reaction is the… Click to show full abstract

The rapid spread of the novel human coronavirus 2019 (COVID-19) and its morbidity have created an urgent need for rapid and sensitive diagnostics. The real-time polymerase chain reaction is the gold standard for detecting the coronavirus in various types of biological specimens. However, this technique is time consuming, labor intensive, and expensive. Screen-printed electrodes (SPEs) can be used as point-of-care devices because of their low cost, sensitivity, selectivity, and ability to be miniaturized. The ability to detect the spike protein of COVID-19 in serum, urine, and saliva was developed using SPE aided by magnetic beads (MBs) and a portable potentiostat. The antibody-peroxidase-loaded MBs were the captured and catalytic units for the electrochemical assays. The MBs enable simple washing and homogenous deposition on the working electrode using a magnet. The assembly of the immunological MBs and the electrochemical system increases the measuring sensitivity and speed. The physical and electrochemical properties of the layer-by-layer modified MBs were systematically characterized. The performance of these immunosensors was evaluated using spike protein in the range 3.12–200 ng mL−1. We achieved a limit of detection of 0.20, 0.31, and 0.54 ng mL−1 in human saliva, urine, and serum, respectively. A facile electrochemical method to detect COVID-19 spike protein was developed for quick point-of-care testing.

Keywords: spike; coronavirus; spike protein; point care

Journal Title: Mikrochimica Acta
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.