LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Operator differential-algebraic equations with noise arising in fluid dynamics

Photo from wikipedia

We study linear semi-explicit stochastic operator differential algebraic equations (DAEs) for which the constraint equation is given in an explicit form. In particular, this includes the Stokes equations arising in… Click to show full abstract

We study linear semi-explicit stochastic operator differential algebraic equations (DAEs) for which the constraint equation is given in an explicit form. In particular, this includes the Stokes equations arising in fluid dynamics. We combine a white noise polynomial chaos expansion approach to include stochastic perturbations with deterministic regularization techniques. With this, we are able to include Gaussian noise and stochastic convolution terms as perturbations in the differential as well as in the constraint equation. By the application of the polynomial chaos expansion method, we reduce the stochastic operator DAE to an infinite system of deterministic operator DAEs for the stochastic coefficients. Since the obtained system is very sensitive to perturbations in the constraint equation, we analyze a regularized version of the system. This then allows to prove the existence and uniqueness of the solution of the initial stochastic operator DAE in a certain weighted space of stochastic processes.

Keywords: fluid dynamics; differential algebraic; operator differential; arising fluid; algebraic equations; operator

Journal Title: Monatshefte Fur Mathematik
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.