LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrated drought risk assessment of multi-hazard-affected bodies based on copulas in the Taoerhe Basin, China

Photo from wikipedia

Along with global warming, drought disasters are occurring more frequently and are seriously affecting normal life and food security in China. Drought risk assessments are necessary to provide support for… Click to show full abstract

Along with global warming, drought disasters are occurring more frequently and are seriously affecting normal life and food security in China. Drought risk assessments are necessary to provide support for local governments. This study aimed to establish an integrated drought risk model based on the relation curve of drought joint probabilities and drought losses of multi-hazard-affected bodies. First, drought characteristics, including duration and severity, were classified using the 1953–2010 precipitation anomaly in the Taoerhe Basin based on run theory, and their marginal distributions were identified by exponential and Gamma distributions, respectively. Then, drought duration and severity were related to construct a joint probability distribution based on the copula function. We used the EPIC (Environmental Policy Integrated Climate) model to simulate maize yield and historical data to calculate the loss rates of agriculture, industry, and animal husbandry in the study area. Next, we constructed vulnerability curves. Finally, the spatial distributions of drought risk for 10-, 20-, and 50-year return periods were expressed using inverse distance weighting. Our results indicate that the spatial distributions of the three return periods are consistent. The highest drought risk is in Ulanhot, and the duration and severity there were both highest. This means that higher drought risk corresponds to longer drought duration and larger drought severity, thus providing useful information for drought and water resource management. For 10-, 20-, and 50-year return periods, the drought risk values ranged from 0.41 to 0.53, 0.45 to 0.59, and 0.50 to 0.67, respectively. Therefore, when the return period increases, the drought risk increases.

Keywords: hazard affected; risk; drought risk; multi hazard; integrated drought

Journal Title: Theoretical and Applied Climatology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.