Reverse genetics of viruses has come a long way, and many recombinant viruses have been generated since the first successful “rescues” were reported in the late 1970s. Recombinant Newcastle disease… Click to show full abstract
Reverse genetics of viruses has come a long way, and many recombinant viruses have been generated since the first successful “rescues” were reported in the late 1970s. Recombinant Newcastle disease virus (rNDV), a non-segmented negative-sense RNA virus (NSNSV), was first rescued in 1999 using a reverse genetics approach similar to that reported for other recombinant viruses of the order Mononegavirales a few years before. The route from an original NDV isolate to the generation of its recombinant counterpart requires many steps that have to be sequentially and carefully completed. Background knowledge of each of these steps is essential because it allows one to make the best choices for fulfilling the specific requirements of the final recombinant virus. We have previously reviewed the latest strategies in cloning the NDV full-length cDNA into transcription vectors and the use of different RNA polymerase systems for the generation of viral RNA from plasmid DNA. In this article, we review a number of discoveries on the mechanism of transcription and replication of NDV, including a brief history behind the discovery of its RNP complex. This includes the generation of artificial and functional RNP constructs, in combination with the smart use of available knowledge and technologies that ultimately resulted in rescue of the first rNDV.
               
Click one of the above tabs to view related content.