Mink circovirus (MiCV), a virus that was newly discovered in 2013, has been associated with enteric disease. However, its etiological role in acute gastroenteritis is unclear, and its genetic characteristics… Click to show full abstract
Mink circovirus (MiCV), a virus that was newly discovered in 2013, has been associated with enteric disease. However, its etiological role in acute gastroenteritis is unclear, and its genetic characteristics are poorly described. In this study, the role of circoviruses (CVs) in mink acute gastroenteritis was investigated, and the MiCV genome was molecularly characterized through sequence analysis. Detection results demonstrated that MiCV was the only pathogen found in this infection. MiCVs and previously characterized CVs shared genome organizational features, including the presence of (i) a potential stem-loop/nonanucleotide motif that is considered to be the origin of virus DNA replication; (ii) two major inversely arranged open reading frames encoding putative replication-associated proteins (Rep) and a capsid protein; (iii) direct and inverse repeated sequences within the putative 5สน region; and (iv) motifs in Rep. Pairwise comparisons showed that the capsid proteins of MiCV shared the highest amino acid sequence identity with those of porcine CV (PCV) 2 (45.4%) and bat CV (BatCV) 1 (45.4%). The amino acid sequence identity levels of Rep shared by MiCV with BatCV 1 (79.7%) and dog CV (dogCV) (54.5%) were broadly similar to those with starling CV (51.1%) and PCVs (46.5%). Phylogenetic analysis indicated that MiCVs were more closely related to mammalian CVs, such as BatCV, PCV, and dogCV, than to other animal CVs. Among mammalian CVs, MiCV and BatCV 1 were the most closely related. This study could contribute to understanding the potential pathogenicity of MiCV and the evolutionary and pathogenic characteristics of mammalian CVs.
               
Click one of the above tabs to view related content.