LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A revisiting of the elasticity solution for a transversely isotropic functionally graded thick-walled tube based on the Mori–Tanaka method

Photo from wikipedia

In this paper, we present the elastic solutions for the problem of an internal pressurized functionally graded thick-walled tube based on the Voigt method in Xin et al. (Int J… Click to show full abstract

In this paper, we present the elastic solutions for the problem of an internal pressurized functionally graded thick-walled tube based on the Voigt method in Xin et al. (Int J Mech Sci 89:344–349, 2014); a transversely isotropic functionally graded thick-walled tube subjected to internal pressure is studied. It is assumed that the functionally graded tube is made up of two linear isotropic elastic materials; the matrix is reinforced by fibers with circular cross section all aligned in the circumferential direction. The volume fraction of the reinforced material is identical with our previous work (i.e., Xin et al. in Int J Mech Sci 89:344–349, 2014). By using the Mori–Tanaka method, this paper obtains the differential equation of the radial displacement and then the numerical results of the radial displacement and the stresses are deduced. The approximate analytical solutions are also derived which agree well with the numerical results on the basis of the Mori–Tanaka method. Further, both based on the Mori–Tanaka method, the results received by the present model are compared with those by a particle model for solving an isotropic inner-pressurized FGM tube problem. Finally, in the numerical part the influences of the volume fraction and the elastic moduli’s ratio on radial displacement and the stresses are discussed.

Keywords: graded thick; mori tanaka; functionally graded; thick walled; method; tanaka method

Journal Title: Acta Mechanica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.