LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magneto-electro-elastic node-based smoothed point interpolation method for micromechanical analysis of natural frequencies of nanobeams

Photo by shotsbywolf from unsplash

As an addition to the traditional finite element method (FEM), the magneto-electro-elastic node-based smoothed point interpolation method (MEE-NS-PIM) with asymptotic homogenization method (AHM) is presented to solve the micromechanical problems… Click to show full abstract

As an addition to the traditional finite element method (FEM), the magneto-electro-elastic node-based smoothed point interpolation method (MEE-NS-PIM) with asymptotic homogenization method (AHM) is presented to solve the micromechanical problems of MEE nanobeams, which overcomes the deficiency of FEM and improves the accuracy of the calculation results. Firstly, the basic equations of MEE medium are derived. Secondly, AHM is adopted to calculate the property parameters of MEE materials under microcosmic situations, and the AHM model is illustrated. Then, the relative formulations of the discretized system used to calculate the frequency of MEE nanostructures are deduced based on MEE-NS-PIM. Moreover, several numerical examples are calculated, and the results of MEE-NS-PIM are compared with those of FEM, which proves the convergence, precision, and effectiveness of MEE-NS-PIM. Therefore, MEE-NS-PIM combined with AHM can be used to analyze the microcosmic MEE coupling problems and obtain a more accurate and reliable solution for MEE micromechanics.

Keywords: mee pim; electro elastic; node based; mee; elastic node; magneto electro

Journal Title: Acta Mechanica
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.