LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical analysis of natural frequency and stress intensity factor in Euler–Bernoulli cracked beam

Photo from wikipedia

In this paper, the evaluation procedures of the natural frequency and the stress intensity factor in the opening mode are established for the Euler–Bernoulli cracked beam by using (a) a… Click to show full abstract

In this paper, the evaluation procedures of the natural frequency and the stress intensity factor in the opening mode are established for the Euler–Bernoulli cracked beam by using (a) a technique in the framework of the finite element method, (b) a group method of data handling (GMDH), and (c) the software ABAQUS software. In the first one, the stiffness and mass matrices of the beam are enriched according to the depth and location of the crack for the determination of the natural frequency. A discrete spring model is used to simulate the crack in the structure based on the energy release rate. The continuity conditions in a cracked element are applied to connect two sub-elements of both sides of the crack. In the second method, the natural frequency and the stress intensity factor are determined using the GMDH algorithm. Design of experiments technique is employed to create an optimum arrangement for the application in the GMDH neural network. A few case studies are examined to investigate the results of the analysis, in addition, to identify the priority and the comparison of the three methods. The procedure of the analysis explains the advantages and limitations of the finite element-based technique, the GMDH method, and ABAQUS.

Keywords: natural frequency; frequency; intensity factor; frequency stress; stress intensity

Journal Title: Acta Mechanica
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.