LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal

Photo from wikipedia

A plane problem is analysed for an electrically permeable crack in a bi-material composed of two semi-infinite 1D piezoelectric quasicrystals bonded together. The polarization direction coincides with the quasiperiodic direction… Click to show full abstract

A plane problem is analysed for an electrically permeable crack in a bi-material composed of two semi-infinite 1D piezoelectric quasicrystals bonded together. The polarization direction coincides with the quasiperiodic direction of the materials and is orthogonal to the interface. Uniformly distributed phonon normal and shear in-plane stresses and also phason stress and electric displacement are applied at infinity. The matrix–vector representations for the phonon and phason stresses, the electrical displacement and for the derivatives of the phonon and phason displacements and electrical potentials jumps via the sectional-holomorphic vector-function are derived. Using these relations and satisfying the conditions at the crack faces, the problems of linear relationship are formulated and solved exactly. All required phonon and phason characteristics are given in the form of simple analytical expressions. A numerical analysis is carried out for two different 1D piezoelectric quasicrystals bonded together. The obtained results are presented in graph and table forms.

Keywords: analytical approach; analysis; electrically permeable; interface; crack; phonon phason

Journal Title: Acta Mechanica
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.