LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An a priori error analysis of a Lord–Shulman poro-thermoelastic problem with microtemperatures

Photo by dawson2406 from unsplash

In this paper, we deal with the numerical analysis of the Lord–Shulman thermoelastic problem with porosity and microtemperatures. The thermomechanical problem leads to a coupled system composed of linear hyperbolic… Click to show full abstract

In this paper, we deal with the numerical analysis of the Lord–Shulman thermoelastic problem with porosity and microtemperatures. The thermomechanical problem leads to a coupled system composed of linear hyperbolic partial differential equations written in terms of transformations of the displacement field and the volume fraction, the temperature and the microtemperatures. An existence and uniqueness result is stated. Then, a fully discrete approximation is introduced using the finite element method and the implicit Euler scheme. A discrete stability property is shown, and an a priori error analysis is provided, from which the linear convergence is derived under suitable regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation, the comparison with the classical Fourier theory and the behavior of the solution in two-dimensional examples.

Keywords: thermoelastic problem; analysis; analysis lord; priori error; lord shulman; problem

Journal Title: Acta Mechanica
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.