LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the loss of stability of periodic oscillations and its relevance to ship capsize

Photo from wikipedia

This research revisits the analysis of roll motion and the possible capsize of floating vessels in beam seas. Many analytical investigations of this topic have adopted the softening Duffing equation,… Click to show full abstract

This research revisits the analysis of roll motion and the possible capsize of floating vessels in beam seas. Many analytical investigations of this topic have adopted the softening Duffing equation, which is similar to the ship roll equation of motion. Here we focus on the loss of stability of periodic oscillations and its relevance to ship capsize. Previous researchers have found the thresholds of the saddle-node, flip, and heteroclinic bifurcations. They derived the flip condition from the negative stiffness condition in a Mathieu type variational equation. In our revisited analysis, we show that this threshold is identical to a pitchfork bifurcation. On the other hand, we simultaneously find that the generated asymmetry solution is unstable due to the limitation of the first order analysis.

Keywords: stability periodic; loss stability; relevance ship; oscillations relevance; periodic oscillations; ship

Journal Title: Journal of Marine Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.