We prove the global existence of an incomplete, continuous-time finite-agent Radner equilibrium in which exponential agents optimise their expected utility over both running consumption and terminal wealth. The market consists… Click to show full abstract
We prove the global existence of an incomplete, continuous-time finite-agent Radner equilibrium in which exponential agents optimise their expected utility over both running consumption and terminal wealth. The market consists of a traded annuity, and along with unspanned income, the market is incomplete. Set in a Brownian framework, the income is driven by a multidimensional diffusion and in particular includes mean-reverting dynamics. The equilibrium is characterised by a system of fully coupled quadratic backward stochastic differential equations, a solution to which is proved to exist under Markovian assumptions. We also show that the equilibrium allocations lead to Pareto-optimal allocations only in exceptional situations.
               
Click one of the above tabs to view related content.