LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Additive logistic processes in option pricing

Photo by xviiizz from unsplash

In option pricing, it is customary to first specify a stochastic underlying model and then extract valuation equations from it. However, it is possible to reverse this paradigm: starting from… Click to show full abstract

In option pricing, it is customary to first specify a stochastic underlying model and then extract valuation equations from it. However, it is possible to reverse this paradigm: starting from an arbitrage-free option valuation formula, one could derive a family of risk-neutral probabilities and a corresponding risk-neutral underlying asset process. In this paper, we start from two simple arbitrage-free valuation equations, inspired by the log-sum-exponential function and an $\ell ^{p}$ ℓ p vector norm. Such expressions lead respectively to logistic and Dagum (or “log-skew-logistic”) risk-neutral distributions for the underlying security price. We proceed to exhibit supporting martingale processes of additive type for underlying securities having as time marginals two such distributions. By construction, these processes produce closed-form valuation equations which are even simpler than those of the Bachelier and Samuelson–Black–Scholes models. Additive logistic processes provide parsimonious and simple option pricing models capturing various important stylised facts at the minimum price of a single market observable input.

Keywords: logistic processes; option; additive logistic; option pricing; valuation

Journal Title: Finance and Stochastics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.