LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The role of inserted polymers in polymeric insulation materials: insights from QM/MD simulations

Photo by greg_rosenke from unsplash

In this study, we performed a quantum chemical molecular dynamics (QM/MD) simulation to investigate the space charge accumulation process in copolymers of polyethylene (PE) with ethylene acrylic acid (EAA), ethylene… Click to show full abstract

In this study, we performed a quantum chemical molecular dynamics (QM/MD) simulation to investigate the space charge accumulation process in copolymers of polyethylene (PE) with ethylene acrylic acid (EAA), ethylene vinyl acetate (EVA), styrene-ethylene-butadiene-styrene (SEBS), and black carbon (BC). We predicted that BC, especially branched BC, would possess the highest electron affinity and is identified as the most promising filler in power cable insulation. Following incorporations of 0–4 high-energy electrons into the composites, branched BC exhibited the highest stability and almost all electrons were trapped by it. Therefore, PE was protected efficiently and BC can be considered as an efficient filler for high voltage cables and an inhibitor of tree formation. On the contrary, although EAA, EVA, and SEBS can trap high-energy electrons, the latter can be supersaturated in composites of EAA, EVA, and SEBS with PE. The inserted polymers was unavoidably destroyed following C–H and C–O bond cleavage, which results from the interactions and charge transfer between PE and inserted polymers. The content effects of –COOH, benzene, and –OCOCH3 groups on the electron trapping, mobility and stability of PE were also investigated systematically. We hope this knowledge gained from this work will be helpful in understanding the role of inserted polymers and the growth mechanisms of electrical treeing in high voltage cable insulation.

Keywords: inserted polymers; polymers polymeric; polymeric insulation; insulation; role inserted

Journal Title: Journal of Molecular Modeling
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.