LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3

Photo by jannerboy62 from unsplash

Na3V2(PO4)3 (NVP) is one of the most promising candidates for use as cathodes in room-temperature sodium ion batteries owing to its high structural stability and rapid Na+ transportation kinetics. The… Click to show full abstract

Na3V2(PO4)3 (NVP) is one of the most promising candidates for use as cathodes in room-temperature sodium ion batteries owing to its high structural stability and rapid Na+ transportation kinetics. The cationic doping of foreign ions at Na or V sites in the NVP lattice has proven to be an effective approach for enhancing the electrochemical performance of NVP. In this work, we present a first-principles density functional theory investigation of the impact of polyanionic boron doping at P sites on the structural and electrochemical behavior of NVP. Our simulation results suggest that B doping considerably increases the structural stability of NVP while shrinking its lattice size to some extent. Since B donates far fewer electrons to connected O atoms, the surrounding V atoms become more positive, causing the operating voltage to increase with B content. However, the reduction in lattice size is not beneficial for the Na+ transportation kinetics. As demonstrated by a search for the transition state, a concerted ion-exchange mechanism is preferred for Na+ transportation, and increased B doping leads to a higher Na+ diffusion barrier. Improvements in electrochemical performance due to B doping see (Hu et al. Adv Sci 3(12):1600112, 2016) appear to originate mainly from the resulting increased electrical conductivity.

Keywords: electrochemical behavior; boron doping; polyanionic boron; na3v2 po4; stability; first principles

Journal Title: Journal of Molecular Modeling
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.