The local electronic structure of the Al=Al bond was studied in dialumene and derivatives of dialumene in which the Al atoms were substituted by B, Ga, or In atoms. DFT… Click to show full abstract
The local electronic structure of the Al=Al bond was studied in dialumene and derivatives of dialumene in which the Al atoms were substituted by B, Ga, or In atoms. DFT calculations were performed using the B3LYP, B3PW91, PBE0, M06-L, and M06-2X functionals. Topological analysis of the electron localization function described the covalent bonds mentioned above using the disynaptic basins Vi=1,2(B,B), Vi=1,2(Al,Al), V(Ga,Ga), and Vi=1,2(In,In). The basin populations were smaller than 4 e, as expected for a double bond: B=B 2.97 e, Al=Al 3.44–3.5 e, Ga=Ga 3.58 e, and In=In 3.86 e. The Al=Al, Ga=Ga, and In=In bonds were found to be intermediate in character between single and double bonds. Topological analysis of the ρ(r) field for dialumene showed a non-nuclear attractor along the Al=Al bond, with a pseudoatom basin population of 0.937 e. NBO analysis suggested that a double bond occurred only in the molecules containing Al, Ga, or In atoms. The character of the Ga=Ga bond was observed to be strongly dependent on the effective core potential used in the calculations.
               
Click one of the above tabs to view related content.