LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A molecular dynamics study on the buckling behavior of single-walled carbon nanotubes filled with gold nanowires

Photo from wikipedia

Molecular dynamics (MD) simulations are carried out to study the buckling of pure gold nanowires (GNWs) and hybrid GNWs@single-walled carbon nanotubes (SWCNTs). The effects of geometrical parameters and endohedral filling… Click to show full abstract

Molecular dynamics (MD) simulations are carried out to study the buckling of pure gold nanowires (GNWs) and hybrid GNWs@single-walled carbon nanotubes (SWCNTs). The effects of geometrical parameters and endohedral filling of SWCNTs on the critical buckling force are taken into consideration. Two different types of GNWs, namely multi-shell and pentagonal GNWs, with various structures are considered. The results illustrate that the buckling force of the pure GNWs is less than those of the pure SWCNTs and hybrid structures. Also, GNWs possess higher buckling forces by increasing their cross-section area. It is observed that enclosing the GNWs by SWCNTs improves the mechanical behaviors of both CNTs and GNWs. In hybrid multi-shell GNWs@SWCNTs, by increasing the radius, the effect of encapsulation on the buckling force is more remarkable. It can be seen that the encapsulation of pentagonal GNWs has a slightly more effect on the buckling behavior than the encapsulation of multi-shell GNWs. Moreover, it is found out that by increasing the length, the buckling force decreases.

Keywords: study buckling; molecular dynamics; walled carbon; single walled; gnws; gold nanowires

Journal Title: Journal of Molecular Modeling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.