LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cocrystals of hydrochlorothiazide with picolinamide, tetramethylpyrazine and piperazine: quantum mechanical studies, docking and modelling of the photovoltaic efficiency for DSSC

Photo from archive.org

Cocrystals are of immense applications in crystal engineering and pharmaceutical chemistry. Hydrochlorothiazide is found to form cocrystals with picolinamide (H1), tetramethylpyrazine (H2) and piperazine (H3). It was characterized using IR… Click to show full abstract

Cocrystals are of immense applications in crystal engineering and pharmaceutical chemistry. Hydrochlorothiazide is found to form cocrystals with picolinamide (H1), tetramethylpyrazine (H2) and piperazine (H3). It was characterized using IR spectra, and quantum mechanical calculations for geometry and other properties. Frontier orbital energies are used to predict the energy properties and model the possible charge transfer between the constituents of the cocrystal. The frontier molecular orbital analysis indicates chemical reactivity and bioactivity of the cocrystals. The MEP surface reveals the various reactive surfaces in the cocrystal system, which is very important in deciding various biological activities. The UV-Vis spectra show the possible electronic transitions of the molecules. Simulated electronic spectra using TDDFT method with CAM-B3LYP functional were used to investigate the suitability of the cocrystals to be used in DSSC. Moreover, the molecular docking analysis proves that the cocrystals can act as potential inhibitors and paves the way for developing effective drugs.

Keywords: tetramethylpyrazine piperazine; picolinamide tetramethylpyrazine; cocrystals hydrochlorothiazide; quantum mechanical; dssc

Journal Title: Journal of Molecular Modeling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.